Härled produktregeln

Härled produktregeln:

$$\\y(x)=f(x)\cdot g(x)\Rightarrow \\\\y'(x)=f'(x)g(x)+f(x)g'(x)\\$$

utifrån derivatans definition:

$$\\f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}\\$$

 

Lösningsförslag:

Bilda först följande differenser:

$$\\ \triangle _{h}f(x)=f(x+h)-f(x)\\\\\triangle _{h}g(x)=g(x+h))-g(x)\\$$

Vi får då följande uttryck för derivatan:

$$\\f'(x)=\lim_{h\rightarrow 0}\frac{\triangle _{h}f(x)}{h}\\\\g'(x)=\lim_{h \to 0}\frac{\triangle _{h}g(x)}{h}\\$$

$$\\y'(x)=\lim_{h\rightarrow 0}\frac{y(x+h)-y(x)}{h}=\\\\=\lim_{h\rightarrow 0 }\frac{f(x+h)g(x+h)-f(x)g(x)}{h}\\$$

Vi kan skriva om ovanstående uttryck med hjälp av de ovan definierade differenserna.

$$\\y'(x)=\lim_{h \rightarrow 0}\frac{(f(x)+\triangle _{h}f(x))(g(x)+\triangle _{h}g(x))-f(x)g(x)}{h}=\\$$

$$\\lim_{h \rightarrow 0}\frac{f(x)g(x)+\triangle_{h}f(x)g(x)+\triangle_{h}g(x)f(x)+\triangle_{h}f(x)\triangle_{h}g(x)-f(x)g(x)}{h}\\$$

$$\\=\lim_{h\rightarrow0}\frac{\triangle_{h}f(x)}{h}g(x)+f(x)\frac{\triangle_{h}g(x)}{h}+\frac{\triangle_{h}f(x)}{h}\triangle_{h}g(x)=\\$$

$$\\f'(x)g(x)+f(x)g'(x)+\lim_{h\rightarrow0}f'(x)\triangle_{h}g(x)=\\\\f'(x)g(x)+f(x)g'(x)+f'(x)\lim_{h\rightarrow0}\triangle_{h}g(x)\\$$

Den sista termen går mot 0 eftersom:

$$\\\lim_{h\rightarrow0}\triangle_{h}g(x)=\lim_{h\rightarrow0}g(x+h)-g(x)=g(x+0)-g(x)=0\\$$

Detta ger slutligen:

$$\\y'(x)=f'(x)g(x)+f(x)g'(x)\\$$

V.S.V.

Har du en fråga du vill ställa om Härled produktregeln? Ställ den på Pluggakuten.se
Har du hittat ett fel, eller har du kommentarer till materialet på den här sidan? Mejla matteboken@mattecentrum.se