Vinklar

I Matte 1-kursen lärde vi oss om de trigonometriska sambanden som finns i rätvinkliga trianglar. Vi inleder det här avsnittet med en repetition av det vi tidigare har lärt oss, för att sedan gå in på områden där vi tillämpar dessa grunder inom trigonometrin.

Som vi lärt oss tidigare kallas en triangel rätvinklig om den har en vinkel som är 90°.

De olika sidorna i en rätvinklig triangel benämns med olika namn i förhållande till vinkeln som man studerar. Hypotenusan är alltid den rätvinkliga triangelns längsta sida, medan de övriga sidorna kallas kateter. Den katet som ligger närmast den vinkel vi studerar benämns närliggande, den andra kateten benämns motstående:

$$\sin v=\frac{motstående\: katet}{hypotenusan}$$

$$\cos v=\frac{närliggande\: katet}{hypotenusan}$$

$$\tan v=\frac{motstående\: katet}{närliggande\: katet}$$


Låt oss titta på ett exempel

Beräkna vinkeln som ligger mellan hypotenusan och sidan som har längden 4 i följande rätvinkliga triangel:

Trigonometri _02

Vi testar först med cosinus och fyller i de kända värdena i ekvationen för cosinus:

$$\cos v=\frac{4}{5}$$

Vi löser ut v och får med hjälp av miniräknaren:

$$v=\cos^{-1}\frac{4}{5}=36,9^{\circ}$$

Härnäst testar vi med sinus. På samma sätt som ovan fyller vi i våra kända värden i ekvationen för sinus:

$$\sin v=\frac{3}{5}$$

Vi löser ut v och får:

$$v=\sin^{-1}\frac{3}{5}=36,9^{\circ}$$

Slutligen testar vi med tangens och fyller i våra kända värden i ekvationen för tangens:

$$\tan v=\frac{3}{4}$$

Vi löser ut v och får:

$$v=\tan^{-1}\frac{3}{4}=36,9^{\circ}$$


Resultaten ovan från vår användning av cosinus-, sinus- och tangensfunktionerna vara alla lika, vilket de borde vara. Vinkeln som vi försöker bestämma är ju densamma i alla tre beräkningarna.

Videolektioner

Här går vi igenom hur vi räknar ut tanges, sinus och cossinus för de speciella vinklarna 30, 45 och 60 grader.

Så förhåller sig sidorna och vinklarna i en rätvinklig triangel till varandra.

Hjälpmedel

Här används grafräknaren Casio FX-CG20.
Se samma uppgift med grafräknaren Casio FX-9750GII.

Grafräknare av andra fabrikat har ungefär motsvarande funktionalitet.

Har du en fråga du vill ställa om Vinklar? Ställ den på Pluggakuten.se
Har du kommentarer till materialet på den här sidan? Mejla matteboken@mattecentrum.se