Uppgift 16
I en butik köper Armand ett rep för 60 kr. En annan butik säljer samma typ av rep men där är repet 1 kr dyrare per meter. Om Armand hade handlat i den andra butiken hade han fått ett 2 meter kortare rep för 60 kr.
Bestäm hur långt rep Armand köpte. Prövning godtas inte.
Lösningsförslag
Vi sätter ut variablerna \(x\) som antal meter som köptes och \(y\) som priset per meter. Vi ställer upp ett ekvationssystemet
$$\begin{cases} x\cdot y = 60 \\ (y+1)(x-2) = 60 \end{cases}$$
Vi använder substitutionsmetoden och sätter in \(y=\frac{60}{x}\) i andra ekvationen. Det är okej att vi delar med \(x\) eftersom den aldrig kommer vara 0, då Armand inte köpte 0 meter rep.
$$\left(\frac{60}{x}+1\right)(x-2)=60$$
$$60-\frac{120}{x}+x-2=60$$
$$-\frac{120}{x}+x-2=0$$
Vi multiplicerar båda sidor med \(x\), detta kommer skapa en andragradsekvation med en falsk rot.
$$-120+x^2-2x=0$$
$$x=\frac{-(-2)}{2}\pm\sqrt{1+120}$$
$$x=1\pm\sqrt{121}$$
$$x=1\pm11$$
$$x_1=1+11=12$$
$$x_2=1-11=-10$$
Den andra roten är negativ, vilket antal meter som köps av ett rep inte kan vara. Alltså är \(x=12\)
Svar: Armand köpte 12 meter rep
Uppgiften är hämtad ur "Kursprov Matematik 2b, vårterminen 2022" - Ladda ner provet här.
I en butik köper Armand ett rep för 60 kr. En annan butik säljer samma typ av rep men där är repet 1 kr dyrare per meter. Om Armand hade handlat i den andra butiken hade han fått ett 2 meter kortare rep för 60 kr.
Bestäm hur långt rep Armand köpte. Prövning godtas inte.
Lösningsförslag
Vi sätter ut variablerna \(x\) som antal meter som köptes och \(y\) som priset per meter. Vi ställer upp ett ekvationssystemet
$$\begin{cases} x\cdot y = 60 \\ (y+1)(x-2) = 60 \end{cases}$$
Vi använder substitutionsmetoden och sätter in \(y=\frac{60}{x}\) i andra ekvationen. Det är okej att vi delar med \(x\) eftersom den aldrig kommer vara 0, då Armand inte köpte 0 meter rep.
$$\left(\frac{60}{x}+1\right)(x-2)=60$$
$$60-\frac{120}{x}+x-2=60$$
$$-\frac{120}{x}+x-2=0$$
Vi multiplicerar båda sidor med \(x\), detta kommer skapa en andragradsekvation med en falsk rot.
$$-120+x^2-2x=0$$
$$x=\frac{-(-2)}{2}\pm\sqrt{1+120}$$
$$x=1\pm\sqrt{121}$$
$$x=1\pm11$$
$$x_1=1+11=12$$
$$x_2=1-11=-10$$
Den andra roten är negativ, vilket antal meter som köps av ett rep inte kan vara. Alltså är \(x=12\)
Svar: Armand köpte 12 meter rep
Uppgiften är hämtad ur "Kursprov Matematik 2b, vårterminen 2022" - Ladda ner provet här.